Pre-processing and post-processing methods

Decorator API

Data pre-processing and post-processing methods can be registered using the pre_load, post_load, pre_dump, and post_dump decorators.

from marshmallow import Schema, fields, post_load


class UserSchema(Schema):
    name = fields.Str()
    slug = fields.Str()

    @post_load
    def slugify_name(self, in_data, **kwargs):
        in_data["slug"] = in_data["slug"].lower().strip().replace(" ", "-")
        return in_data


schema = UserSchema()
result = schema.load({"name": "Steve", "slug": "Steve Loria "})
result["slug"]  # => 'steve-loria'

Passing “many”

By default, pre- and post-processing methods receive one object/datum at a time, transparently handling the many parameter passed to the Schema’s dump/load method at runtime.

In cases where your pre- and post-processing methods needs to handle the input collection when processing multiple objects, add pass_many=True to the method decorators.

Your method will then receive the input data (which may be a single datum or a collection, depending on the dump/load call).

Example: Enveloping

One common use case is to wrap data in a namespace upon serialization and unwrap the data during deserialization.

from marshmallow import Schema, fields, pre_load, post_load, post_dump


class BaseSchema(Schema):
    # Custom options
    __envelope__ = {"single": None, "many": None}
    __model__ = User

    def get_envelope_key(self, many):
        """Helper to get the envelope key."""
        key = self.__envelope__["many"] if many else self.__envelope__["single"]
        assert key is not None, "Envelope key undefined"
        return key

    @pre_load(pass_many=True)
    def unwrap_envelope(self, data, many, **kwargs):
        key = self.get_envelope_key(many)
        return data[key]

    @post_dump(pass_many=True)
    def wrap_with_envelope(self, data, many, **kwargs):
        key = self.get_envelope_key(many)
        return {key: data}

    @post_load
    def make_object(self, data, **kwargs):
        return self.__model__(**data)


class UserSchema(BaseSchema):
    __envelope__ = {"single": "user", "many": "users"}
    __model__ = User
    name = fields.Str()
    email = fields.Email()


user_schema = UserSchema()

user = User("Mick", email="mick@stones.org")
user_data = user_schema.dump(user)
# {'user': {'email': 'mick@stones.org', 'name': 'Mick'}}

users = [
    User("Keith", email="keith@stones.org"),
    User("Charlie", email="charlie@stones.org"),
]
users_data = user_schema.dump(users, many=True)
# {'users': [{'email': 'keith@stones.org', 'name': 'Keith'},
#            {'email': 'charlie@stones.org', 'name': 'Charlie'}]}

user_objs = user_schema.load(users_data, many=True)
# [<User(name='Keith Richards')>, <User(name='Charlie Watts')>]

Raising errors in pre-/post-processor methods

Pre- and post-processing methods may raise a ValidationError. By default, errors will be stored on the "_schema" key in the errors dictionary.

from marshmallow import Schema, fields, ValidationError, pre_load


class BandSchema(Schema):
    name = fields.Str()

    @pre_load
    def unwrap_envelope(self, data, **kwargs):
        if "data" not in data:
            raise ValidationError('Input data must have a "data" key.')
        return data["data"]


sch = BandSchema()
try:
    sch.load({"name": "The Band"})
except ValidationError as err:
    err.messages
# {'_schema': ['Input data must have a "data" key.']}

If you want to store and error on a different key, pass the key name as the second argument to ValidationError.

from marshmallow import Schema, fields, ValidationError, pre_load


class BandSchema(Schema):
    name = fields.Str()

    @pre_load
    def unwrap_envelope(self, data, **kwargs):
        if "data" not in data:
            raise ValidationError(
                'Input data must have a "data" key.', "_preprocessing"
            )
        return data["data"]


sch = BandSchema()
try:
    sch.load({"name": "The Band"})
except ValidationError as err:
    err.messages
# {'_preprocessing': ['Input data must have a "data" key.']}

Pre-/post-processor invocation order

In summary, the processing pipeline for deserialization is as follows:

  1. @pre_load(pass_many=True) methods

  2. @pre_load(pass_many=False) methods

  3. load(in_data, many) (validation and deserialization)

  4. @validates methods (field validators)

  5. @validates_schema methods (schema validators)

  6. @post_load(pass_many=True) methods

  7. @post_load(pass_many=False) methods

The pipeline for serialization is similar, except that the pass_many=True processors are invoked after the pass_many=False processors and there are no validators.

  1. @pre_dump(pass_many=False) methods

  2. @pre_dump(pass_many=True) methods

  3. dump(obj, many) (serialization)

  4. @post_dump(pass_many=False) methods

  5. @post_dump(pass_many=True) methods

Warning

You may register multiple processor methods on a Schema. Keep in mind, however, that the invocation order of decorated methods of the same type is not guaranteed. If you need to guarantee order of processing steps, you should put them in the same method.

from marshmallow import Schema, fields, pre_load


# YES
class MySchema(Schema):
    field_a = fields.Raw()

    @pre_load
    def preprocess(self, data, **kwargs):
        step1_data = self.step1(data)
        step2_data = self.step2(step1_data)
        return step2_data

    def step1(self, data): ...

    # Depends on step1
    def step2(self, data): ...


# NO
class MySchema(Schema):
    field_a = fields.Raw()

    @pre_load
    def step1(self, data, **kwargs): ...

    # Depends on step1
    @pre_load
    def step2(self, data, **kwargs): ...