Upgrading to Newer Releases¶
This section documents migration paths to new releases.
Upgrading to 3.3¶
In 3.3, fields.Nested
may take a callable that returns a schema instance.
Use this to resolve order-of-declaration issues when schemas nest each other.
from marshmallow import Schema, fields
# <3.3
class AlbumSchema(Schema):
title = fields.Str()
artist = fields.Nested("ArtistSchema", only=("name",))
class ArtistSchema(Schema):
name = fields.Str()
albums = fields.List(fields.Nested(AlbumSchema))
# >=3.3
class AlbumSchema(Schema):
title = fields.Str()
artist = fields.Nested(lambda: ArtistSchema(only=("name",)))
class ArtistSchema(Schema):
name = fields.Str()
albums = fields.List(fields.Nested(AlbumSchema))
A callable should also be used when nesting a schema within itself.
Passing "self"
is deprecated.
from marshmallow import Schema, fields
# <3.3
class PersonSchema(Schema):
partner = fields.Nested("self", exclude=("partner",))
friends = fields.List(fields.Nested("self"))
# >=3.3
class PersonSchema(Schema):
partner = fields.Nested(lambda: PersonSchema(exclude=("partner")))
friends = fields.List(fields.Nested(lambda: PersonSchema()))
Upgrading to 3.0¶
Python compatibility¶
The marshmallow 3.x series supports Python >= 3.8.
Schemas are always strict¶
Two major changes were made to (de)serialization behavior:
The
strict
parameter was removed. Schemas are always strict.Schema().load
andSchema().dump
don’t return a(data, errors)
tuple any more. Onlydata
is returned.
If invalid data are passed, a ValidationError
is raised.
The dictionary of validation errors is accessible from the
ValidationError.messages
attribute,
along with the valid data from the ValidationError.valid_data
attribute.
from marshmallow import ValidationError
# 2.x
schema = UserSchema()
data, errors = schema.load({"name": "Monty", "email": "monty@python.org"})
# OR
schema = UserSchema(strict=True)
try:
data, _ = schema.load({"name": "Monty", "email": "monty@python.org"})
except ValidationError as err:
errors = err.messages
valid_data = err.valid_data
# 3.x
schema = UserSchema()
# There is only one right way
try:
data = schema.load({"name": "Monty", "email": "monty@python.org"})
except ValidationError as err:
errors = err.messages
valid_data = err.valid_data
Schema.validate()
always returns a dictionary of validation errors (same as 2.x with strict=False
).
schema.validate({"email": "invalid"})
# {'email': ['Not a valid email address.']}
Setting the strict
option on class Meta
has no effect on Schema
behavior.
Passing strict=True
or strict=False
to the Schema
constructor
will raise a TypeError
.
# 3.x
UserSchema(strict=True)
# TypeError: __init__() got an unexpected keyword argument 'strict'
Decorated methods and handle_error
receive many
and partial
¶
Methods decorated with
pre_load
, post_load
,
pre_dump
, post_dump
,
and validates_schema
receive
many
as a keyword argument. In addition, pre_load
, post_load
,
and validates_schema
receive
partial
. To account for these additional arguments, add **kwargs
to your methods.
# 2.x
class UserSchema(Schema):
name = fields.Str()
slug = fields.Str()
@pre_load
def slugify_name(self, in_data):
in_data["slug"] = in_data["slug"].lower().strip().replace(" ", "-")
return in_data
# 3.x
class UserSchema(Schema):
name = fields.Str()
slug = fields.Str()
@pre_load
def slugify_name(self, in_data, **kwargs):
in_data["slug"] = in_data["slug"].lower().strip().replace(" ", "-")
return in_data
Schema.handle_error
also receives many
and partial
as keyword arguments.
# 2.x
class UserSchema(Schema):
def handle_error(self, exc, data):
raise AppError("An error occurred with input: {0}".format(data))
# 3.x
class UserSchema(Schema):
def handle_error(self, exc, data, **kwargs):
raise AppError("An error occurred with input: {0}".format(data))
Validation does not occur on serialization¶
Schema.dump()
will no longer validate and collect error messages. You must validate
your data before serializing it.
from marshmallow import Schema, fields, ValidationError
invalid_data = dict(created_at="invalid")
class WidgetSchema(Schema):
created_at = fields.DateTime()
# 2.x
WidgetSchema(strict=True).dump(invalid_data)
# marshmallow.exceptions.ValidationError: {'created_at': ['"invalid" cannot be formatted as a datetime.']}
# 3.x
WidgetSchema().dump(invalid_data)
# AttributeError: 'str' object has no attribute 'isoformat'
# Instead, validate before dumping
schema = WidgetSchema()
try:
widget = schema.load(invalid_data)
except ValidationError:
print("handle errors...")
else:
dumped = schema.dump(widget)
Deserializing invalid types raises a ValidationError
¶
Numbers, booleans, strings, and None
are
considered invalid input to Schema.load
.
# 2.x
# Passes silently
schema.load(None)
schema.load(False)
schema.load("pass")
# 3.x
# marshmallow.exceptions.ValidationError: {'_schema': ['Invalid input type.']}
schema.load(None)
schema.load(False)
schema.load("nope")
When many=True
, non-collection types are also considered invalid.
# 2.x
# Passes silently
schema.load(None, many=True)
schema.load({}, many=True)
schema.load("pass", many=True)
# 3.x
# marshmallow.exceptions.ValidationError: {'_schema': ['Invalid input type.']}
schema.load(None, many=True)
schema.load({}, many=True)
schema.load("invalid", many=True)
ValidationError.fields
is removed¶
ValidationError
no
longer stores a list of Field
instances
associated with the validation errors.
If you need field instances associated with an error, you can access
them from schema.fields
.
from marshmallow import Schema, fields, ValidationError
class MySchema(Schema):
foo = fields.Int()
schema = MySchema()
try:
schema.load({"foo": "invalid"})
except ValidationError as error:
field = schema.fields["foo"]
# ...
ValidationError
expects a single field name¶
ValidationError
no
longer accepts a list of field names. It expects a single field name. If none
is passed, the error refers to the schema.
To return an error for several fields at once, a dict
must be used.
from marshmallow import Schema, fields, validates_schema, ValidationError
class NumberSchema(Schema):
field_a = fields.Integer()
field_b = fields.Integer()
# 2.x
@validates_schema
def validate_numbers(self, data):
if data["field_b"] >= data["field_a"]:
raise ValidationError(
"field_a must be greater than field_b", ["field_a", "field_b"]
)
# 3.x
@validates_schema
def validate_numbers(self, data):
if data["field_b"] >= data["field_a"]:
raise ValidationError(
{
"field_a": ["field_a must be greater than field_b"],
"field_b": ["field_a must be greater than field_b"],
}
)
ValidationError
error messages are deep-merged¶
When multiple ValidationError
are raised, the error structures are merged in the final ValidationError
raised at the end of the process.
When reporting error messages as dict
, the keys should refer to subitems
of the item the message refers to, and the values should be error messages.
See the “Schema-level Validation” section of Extending Schemas page for an example.
Schemas raise ValidationError
when deserializing data with unknown keys¶
Marshmallow 3.x schemas can deal with unknown keys in three different ways,
configurable with the unknown
option:
EXCLUDE
: drop those keys (same as marshmallow 2)INCLUDE
: pass those keys/values as is, with no validation performedRAISE
(default): raise aValidationError
The unknown
option can be passed as a Meta option, on Schema instantiation,
or at load time.
from marshmallow import Schema, fields, EXCLUDE, INCLUDE, RAISE
class MySchema(Schema):
foo = fields.Int()
class Meta:
# Pass EXCLUDE as Meta option to keep marshmallow 2 behavior
unknown = EXCLUDE
MySchema().load({"foo": 42, "bar": "whatever"}) # => ['foo': 42]
# Value passed on instantiation overrides Meta option
schema = MySchema(unknown=INCLUDE)
schema.load({"foo": 42, "bar": "whatever"}) # => ['foo': 42, 'bar': 'whatever']
# Value passed on load overrides instance attribute
schema.load({"foo": 42, "bar": "whatever"}, unknown=RAISE) # => ValidationError
Overriding get_attribute
¶
If your Schema
overrides get_attribute
, you will need to update the method’s signature. The positions of the attr
and obj
arguments were switched for consistency with Python builtins, e.g. getattr
.
from marshmallow import Schema
# 2.x
class MySchema(Schema):
def get_attribute(self, attr, obj, default):
return getattr(obj, attr, default)
# 3.x
class MySchema(Schema):
def get_attribute(self, obj, attr, default):
return getattr(obj, attr, default)
pass_original=True
passes individual items when many=True
¶
When pass_original=True
is passed to
validates_schema
,
post_load
, or
post_dump
, the original_data
argument will be a single item corresponding to the (de)serialized
datum.
from marshmallow import Schema, fields, post_load, EXCLUDE
class ShoeSchema(Schema):
size = fields.Int()
class Meta:
unknown = EXCLUDE
@post_load(pass_original=True)
def post_load(self, data, original_data, **kwargs):
# original_data has 'width' but
# data does not because it's not
# in the schema
assert "width" in original_data
assert "width" not in data
return data
input_data = [{"size": 10, "width": "M"}, {"size": 6, "width": "W"}]
print(ShoeSchema(many=True).load(input_data))
# [{'size': 10}, {'size': 6}]
utils.get_func_args
no longer returns bound arguments¶
The utils.get_func_args
function will no longer return bound arguments, e.g. 'self'
.
from marshmallow.utils import get_func_args
class MyCallable:
def __call__(self, foo, bar):
return 42
callable_obj = MyCallable()
# 2.x
get_func_args(callable_obj) # => ['self', 'foo', 'bar']
# 3.x
get_func_args(callable_obj) # => ['foo', 'bar']
Handling AttributeError
in Method
and Function
fields¶
The Method
and Function
fields no longer swallow AttributeErrors
. Therefore, your methods and functions are responsible for handling inputs such as None
.
from marshmallow import Schema, fields, missing
# 2.x
class ShapeSchema(Schema):
area = fields.Method("get_area")
def get_area(self, obj):
return obj.height * obj.length
schema = ShapeSchema()
# In 2.x, the following would pass without errors
# In 3.x, and AttributeError would be raised
result = schema.dump(None)
result # => {}
# 3.x
class ShapeSchema(Schema):
area = fields.Method("get_area")
def get_area(self, obj):
if obj is None:
# 'area' will not appear in serialized output
return missing
return obj.height * obj.length
schema = ShapeSchema()
result = schema.dump(None)
result # => {}
Adding additional data to serialized output¶
Use a post_dump
to add additional data on serialization. The extra
argument on Schema
was removed.
from marshmallow import Schema, fields, post_dump
# 2.x
class MySchema(Schema):
x = fields.Int()
y = fields.Int()
schema = MySchema(extra={"z": 123})
schema.dump({"x": 1, "y": 2})
# => {'z': 123, 'y': 2, 'x': 1}
# 3.x
class MySchema(Schema):
x = fields.Int()
y = fields.Int()
@post_dump
def add_z(self, output):
output["z"] = 123
return output
schema = MySchema()
schema.dump({"x": 1, "y": 2})
# => {'z': 123, 'y': 2, 'x': 1}
Schema-level validators are skipped when field validation fails¶
By default, schema validator methods decorated by validates_schema
won’t execute if any of the field validators fails (including required=True
validation).
from marshmallow import Schema, fields, validates_schema, ValidationError
class MySchema(Schema):
x = fields.Int(required=True)
y = fields.Int(required=True)
@validates_schema
def validate_schema(self, data):
if data["x"] <= data["y"]:
raise ValidationError("x must be greater than y")
schema = MySchema()
# 2.x
# A KeyError is raised in validate_schema
schema.load({"x": 2})
# 3.x
# marshmallow.exceptions.ValidationError: {'y': ['Missing data for required field.']}
# validate_schema is not run
schema.load({"x": 2})
If you want a schema validator to run even if a field validator fails, pass skip_on_field_errors=False
. Make sure your code handles cases where fields are missing from the deserialized data (due to validation errors).
from marshmallow import Schema, fields, validates_schema, ValidationError
class MySchema(Schema):
x = fields.Int(required=True)
y = fields.Int(required=True)
@validates_schema(skip_on_field_errors=False)
def validate_schema(self, data):
if "x" in data and "y" in data:
if data["x"] <= data["y"]:
raise ValidationError("x must be greater than y")
schema = MySchema()
schema.load({"x": 2})
# marshmallow.exceptions.ValidationError: {'y': ['Missing data for required field.']}
SchemaOpts
constructor receives ordered
argument¶
Subclasses of SchemaOpts
receive an additional argument, ordered
, which is True
if the ordered
option is set to True
on a Schema or one of its parent classes.
from marshmallow import SchemaOpts
# 2.x
class CustomOpts(SchemaOpts):
def __init__(self, meta):
super().__init__(meta)
self.custom_option = getattr(meta, "meta", False)
# 3.x
class CustomOpts(SchemaOpts):
def __init__(self, meta, ordered=False):
super().__init__(meta, ordered)
self.custom_option = getattr(meta, "meta", False)
ContainsOnly
accepts empty and duplicate values¶
validate.ContainsOnly
now accepts duplicate values in the input value.
from marshmallow import validate
validator = validate.ContainsOnly(["red", "blue"])
# in 2.x the following raises a ValidationError
# in 3.x, no error is raised
validator(["red", "red", "blue"])
If you don’t want to accept duplicates, use a custom validator, like the following.
from marshmallow import ValidationError
from marshmallow.validate import ContainsOnly
class ContainsOnlyNoDuplicates(ContainsOnly):
def __call__(self, value):
ret = super(ContainsOnlyNoDuplicates, self).__call__(value)
if len(set(value)) != len(value):
raise ValidationError("Duplicate values not allowed")
return ret
Note
If you need to handle unhashable types, you can use the implementation of ContainsOnly from marshmallow 2.x.
validate.ContainsOnly
also accepts empty values as valid input.
from marshmallow import validate
validator = validate.ContainsOnly(["red", "blue"])
# in 2.x the following raises a ValidationError
# in 3.x, no error is raised
validator([])
To validate against empty inputs, use validate.Length(min=1)
.
json_module
option is renamed to render_module
¶
The json_module
class Meta option is deprecated in favor of render_module
.
import ujson
# 2.x
class MySchema(Schema):
class Meta:
json_module = ujson
# 3.x
class MySchema(Schema):
class Meta:
render_module = ujson
missing
and default
Field
parameters are passed in deserialized form¶
# 2.x
class UserSchema(Schema):
id = fields.UUID(missing=lambda: str(uuid.uuid1()))
birthdate = fields.DateTime(default=lambda: dt.datetime(2017, 9, 19).isoformat())
# 3.x
class UserSchema(Schema):
id = fields.UUID(missing=uuid.uuid1)
birthdate = fields.DateTime(default=dt.datetime(2017, 9, 19))
Pass default
as a keyword argument¶
fields.Boolean
now receives additional truthy
and falsy
parameters. Consequently, the default
parameter should always be passed as a keyword argument.
# 2.x
fields.Boolean(True)
# 3.x
fields.Boolean(default=True)
Email
and URL
fields do not validate on serialization¶
fields.Email
and fields.URL
only validate input upon
deserialization. They do not validate on serialization. This makes them
more consistent with the other fields and improves serialization
performance.
load_from
and dump_to
are merged into data_key
¶
The same key is used for serialization and deserialization.
# 2.x
class UserSchema(Schema):
email = fields.Email(load_from="CamelCasedEmail", dump_to="CamelCasedEmail")
# 3.x
class UserSchema(Schema):
email = fields.Email(data_key="CamelCasedEmail")
It is not possible to specify a different key for serialization and deserialization on the same field.
This use case is covered by using two different Schema
.
from marshmallow import Schema, fields
# 2.x
class UserSchema(Schema):
id = fields.Str()
email = fields.Email(load_from="CamelCasedEmail", dump_to="snake_case_email")
# 3.x
class BaseUserSchema(Schema):
id = fields.Str()
class LoadUserSchema(BaseUserSchema):
email = fields.Email(data_key="CamelCasedEmail")
class DumpUserSchema(BaseUserSchema):
email = fields.Email(data_key="snake_case_email")
Also, when data_key
is specified on a field, only data_key
is checked in the input data. In marshmallow 2.x the field name is checked if load_from
is missing from the input data.
Pre/Post-processors must return modified data¶
In marshmallow 2.x, None
returned by a pre or post-processor is interpreted as “the data was mutated”. In marshmallow 3.x, the return value is considered as processed data even if it is None
.
Processors that mutate the data should be updated to also return it.
# 2.x
class UserSchema(Schema):
name = fields.Str()
slug = fields.Str()
@pre_load
def slugify_name(self, in_data):
# In 2.x, implicitly returning None implied that data were mutated
in_data["slug"] = in_data["slug"].lower().strip().replace(" ", "-")
# 3.x
class UserSchema(Schema):
name = fields.Str()
slug = fields.Str()
@pre_load
def slugify_name(self, in_data, **kwargs):
# In 3.x, always return the processed data
in_data["slug"] = in_data["slug"].lower().strip().replace(" ", "-")
return in_data
Nested
field no longer supports plucking¶
In marshmallow 2.x, when a string was passed to a Nested
field’s `only
parameter, the field would be plucked. In marshmallow 3.x, the Pluck
field must be used instead.
# 2.x
class UserSchema(Schema):
name = fields.Str()
friends = fields.Nested("self", many=True, only="name")
# 3.x
class UserSchema(Schema):
name = fields.Str()
friends = fields.Pluck("self", "name", many=True)
Accessing attributes on objects within a list¶
In order to serialize attributes on inner objects within a list, use the
Pluck
field.
# 2.x
class FactorySchema(Schema):
widget_ids = fields.List(fields.Int(attribute="id"))
# 3.x
class FactorySchema(Schema):
widget_ids = fields.List(fields.Pluck(WidgetSchema, "id"))
List
does not wrap single values in a list on serialization¶
In marshmallow 2.x, List
serializes a single object as a list with a single
element. In marshmallow 3.x, the object is assumed to be iterable and passing a
non-iterable element results in an error.
class UserSchema(Schema):
numbers = fields.List(fields.Int())
user = {"numbers": 1}
UserSchema().dump(user)
# 2.x
# => {'numbers': [1]}
# 3.x
# => TypeError: 'int' object is not iterable
Float
field takes a new allow_nan
parameter¶
In marshmallow 2.x, Float
field would serialize and deserialize special values such as nan
, inf
or -inf
. In marshmallow 3, those values trigger a ValidationError
unless allow_nan
is True
. allow_nan
defaults to False
.
# 2.x
class MySchema(Schema):
x = fields.Float()
MySchema().load({"x": "nan"})
# => {{'x': nan}}
# 3.x
class MySchema(Schema):
x = fields.Float()
y = fields.Float(allow_nan=True)
MySchema().load({"x": 12, "y": "nan"})
# => {{'x': 12.0, 'y': nan}}
MySchema().load({"x": "nan"})
# marshmallow.exceptions.ValidationError: {'x': ['Special numeric values (nan or infinity) are not permitted.']}
DateTime
field dateformat
Meta
option is renamed datetimeformat
¶
The Meta
option dateformat
used to pass format to DateTime
field is renamed as datetimeformat
.
Date
field gets a new format
parameter to specify the format to use for serialization. dateformat
Meta
option now applies to Date
field.
# 2.x
class MySchema(Schema):
x = fields.DateTime()
class Meta:
dateformat = "%Y-%m"
MySchema().dump({"x": dt.datetime(2017, 9, 19)})
# => {{'x': '2017-09'}}
# 3.x
class MySchema(Schema):
x = fields.DateTime()
y = fields.Date()
class Meta:
datetimeformat = "%Y-%m"
dateformat = "%m-%d"
MySchema().dump({"x": dt.datetime(2017, 9, 19), "y": dt.date(2017, 9, 19)})
# => {{'x': '2017-09', 'y': '09-19'}}
DateTime
leaves timezone information untouched during serialization¶
DateTime
does not convert naive datetimes to UTC on serialization and
LocalDateTime
is removed.
# 2.x
class MySchema(Schema):
x = fields.DateTime()
y = fields.DateTime()
z = fields.LocalDateTime()
MySchema().dump(
{
"x": dt.datetime(2017, 9, 19),
"y": dt.datetime(2017, 9, 19, tzinfo=dt.timezone(dt.timedelta(hours=2))),
"z": dt.datetime(2017, 9, 19, tzinfo=dt.timezone(dt.timedelta(hours=2))),
}
)
# => {{'x': '2017-09-19T00:00:00+00:00', 'y': '2017-09-18T22:00:00+00:00', 'z': '2017-09-19T00:00:00+02:00'}}
# 3.x
class MySchema(Schema):
x = fields.DateTime()
y = fields.DateTime()
MySchema().dump(
{
"x": dt.datetime(2017, 9, 19),
"y": dt.datetime(2017, 9, 19, tzinfo=dt.timezone(dt.timedelta(hours=2))),
}
)
# => {{'x': '2017-09-19T00:00:00', 'y': '2017-09-19T00:00:00+02:00'}}
The prefix
Schema
parameter is removed¶
The prefix
parameter of Schema
is removed. The same feature can be achieved using a post_dump <marshmallow.decorators.post_dump>` method.
# 2.x
class MySchema(Schema):
f1 = fields.Field()
f2 = fields.Field()
MySchema(prefix="pre_").dump({"f1": "one", "f2": "two"})
# {'pre_f1': 'one', '_pre_f2': 'two'}
# 3.x
class MySchema(Schema):
f1 = fields.Field()
f2 = fields.Field()
@post_dump
def prefix_usr(self, data):
return {"usr_{}".format(k): v for k, v in iteritems(data)}
MySchema().dump({"f1": "one", "f2": "two"})
# {'pre_f1': 'one', '_pre_f2': 'two'}
fields.FormattedString
is removed¶
fields.FormattedString
field is removed. Use fields.Function
or
fields.Method
instead.
# 2.x
class MySchema(Schema):
full_name = fields.FormattedString("{first_name} {last_name}")
# 3.x
class MySchema(Schema):
full_name = fields.Function(lambda u: f"{u.first_name} {u.last_name}")
attribute
or data_key
collision triggers an exception¶
When a Schema
is instantiated, a check is performed and a ValueError
is triggered if
several fields have the same
attribute
value (or field name ifattribute
is not passed), excludingdump_only
fields, orseveral fields have the same
data_key
value (or field name ifdata_key
is not passed), excludingload_only
fields
In marshmallow 2, it was possible to have multiple fields with the same attribute
. It would work provided the Schema
was only used for dumping. When loading, the behaviour was undefined. In marshmallow 3, all but one of those fields must be marked as dump_only
. Likewise for data_key
(formerly dump_to
) for fields that are not load_only
.
# 2.x
class MySchema(Schema):
f1 = fields.Field()
f2 = fields.Field(attribute="f1")
f3 = fields.Field(attribute="f5")
f4 = fields.Field(attribute="f5")
MySchema()
# No error
# 3.x
class MySchema(Schema):
f1 = fields.Field()
f2 = fields.Field(attribute="f1")
f3 = fields.Field(attribute="f5")
f4 = fields.Field(attribute="f5")
MySchema()
# ValueError: 'Duplicate attributes: ['f1', 'f5]'
class MySchema(Schema):
f1 = fields.Field()
f2 = fields.Field(attribute="f1", dump_only=True)
f3 = fields.Field(attribute="f5")
f4 = fields.Field(attribute="f5", dump_only=True)
MySchema()
# No error
Field.fail
is deprecated in favor of Field.make_error
¶
Field.fail
is deprecated.
Use Field.make_error
. This allows you to
re-raise exceptions using raise ... from ...
.
from marshmallow import fields, ValidationError
from packaging import version
# 2.x
class Version(fields.Field):
default_error_messages = {"invalid": "Not a valid version."}
def _deserialize(self, value, *args, **kwargs):
try:
return version.Version(value)
except version.InvalidVersion:
self.fail("invalid")
# 3.x
class Version(fields.Field):
default_error_messages = {"invalid": "Not a valid version."}
def _deserialize(self, value, *args, **kwargs):
try:
return version.Version(value)
except version.InvalidVersion as error:
raise self.make_error("invalid") from error
python-dateutil
recommended dependency is removed¶
In marshmallow 2, python-dateutil
was used to deserialize RFC or ISO 8601
datetimes if it was installed. In marshmallow 3, datetime deserialization is
done with no additional dependency.
python-dateutil
is no longer used by marshmallow.
Custom Fields¶
To make your custom fields compatible with marshmallow 3, _deserialize
should accept **kwargs
:
from marshmallow import fields, ValidationError
from packaging import version
# 2.x
class MyCustomField(fields.Field):
def _deserialize(self, value, attr, obj):
...
# 3.x
class MyCustomField(fields.Field):
def _deserialize(self, value, attr, obj, **kwargs):
...
Upgrading to 2.3¶
The func
parameter of fields.Function
was renamed to serialize
.
# YES
lowername = fields.Function(serialize=lambda obj: obj.name.lower())
# or
lowername = fields.Function(lambda obj: obj.name.lower())
# NO
lowername = fields.Function(func=lambda obj: obj.name.lower())
Similarly, the method_name
of fields.Method
was also renamed to serialize
.
# YES
lowername = fields.Method(serialize="lowercase")
# or
lowername = fields.Method("lowercase")
# NO
lowername = fields.Method(method_name="lowercase")
The func
parameter is still available for backwards-compatibility. It will be removed in marshmallow 3.0.
Both fields.Function
and fields.Method
will allow the serialize parameter to not be passed, in this case use the deserialize
parameter by name.
lowername = fields.Function(deserialize=lambda name: name.lower())
# or
lowername = fields.Method(deserialize="lowername")
Upgrading to 2.0¶
Deserializing None
¶
In 2.0, validation/deserialization of None
is consistent across field types. If allow_none
is False
(the default), validation fails when the field’s value is None
. If allow_none
is True
, None
is considered valid, and the field deserializes to None
.
from marshmallow import fields
# In 1.0, deserialization of None was inconsistent
fields.Int().deserialize(None) # 0
fields.Str().deserialize(None) # ''
fields.DateTime().deserialize(None) # error: Could not deserialize None to a datetime.
# In 2.0, validation/deserialization of None is consistent
fields.Int().deserialize(None) # error: Field may not be null.
fields.Str().deserialize(None) # error: Field may not be null.
fields.DateTime().deserialize(None) # error: Field may not be null.
# allow_none makes None a valid value
fields.Int(allow_none=True).deserialize(None) # None
Default Values¶
Before version 2.0, certain fields (including String
, List
, Nested
, and number fields) had implicit default values that would be used if their corresponding input value was None
or missing.
In 2.0, these implicit defaults are removed. A Field's
default
parameter is only used if you explicitly set it. Otherwise, missing inputs will be excluded from the serialized output.
from marshmallow import Schema, fields
class MySchema(Schema):
str_no_default = fields.Str()
int_no_default = fields.Int()
list_no_default = fields.List(fields.Str)
schema = MySchema()
# In 1.0, None was treated as a missing input, so implicit default values were used
schema.dump(
{"str_no_default": None, "int_no_default": None, "list_no_default": None}
).data
# {'str_no_default': '', 'int_no_default': 0, 'list_no_default': []}
# In 2.0, None serializes to None. No more implicit defaults.
schema.dump(
{"str_no_default": None, "int_no_default": None, "list_no_default": None}
).data
# {'str_no_default': None, 'int_no_default': None, 'list_no_default': None}
# In 1.0, implicit default values were used for missing inputs
schema.dump({}).data
# {'int_no_default': 0, 'str_no_default': '', 'list_no_default': []}
# In 2.0, missing inputs are excluded from the serialized output
# if no defaults are specified
schema.dump({}).data
# {}
As a consequence of this new behavior, the skip_missing
class Meta option has been removed.
Pre-processing and Post-processing Methods¶
The pre- and post-processing API was significantly improved for better consistency and flexibility. The pre_load
, post_load
, pre_dump
, and post_dump
should be used to define processing hooks. Schema.preprocessor
and Schema.data_handler
are removed.
# 1.0 API
from marshmallow import Schema, fields
class ExampleSchema(Schema):
field_a = fields.Int()
@ExampleSchema.preprocessor
def increment(schema, data):
data["field_a"] += 1
return data
@ExampleSchema.data_handler
def decrement(schema, data, obj):
data["field_a"] -= 1
return data
# 2.0 API
from marshmallow import Schema, fields, pre_load, post_dump
class ExampleSchema(Schema):
field_a = fields.Int()
@pre_load
def increment(self, data):
data["field_a"] += 1
return data
@post_dump
def decrement(self, data):
data["field_a"] -= 1
return data
See the Extending Schemas page for more information on the pre_*
and post_*
decorators.
Schema Validators¶
Similar to pre-processing and post-processing methods, schema validators are now defined as methods. Decorate schema validators with validates_schema
. Schema.validator
is removed.
# 1.0 API
from marshmallow import Schema, fields, ValidationError
class MySchema(Schema):
field_a = fields.Int(required=True)
field_b = fields.Int(required=True)
@ExampleSchema.validator
def validate_schema(schema, data):
if data["field_a"] < data["field_b"]:
raise ValidationError("field_a must be greater than field_b")
# 2.0 API
from marshmallow import Schema, fields, validates_schema, ValidationError
class MySchema(Schema):
field_a = fields.Int(required=True)
field_b = fields.Int(required=True)
@validates_schema
def validate_schema(self, data):
if data["field_a"] < data["field_b"]:
raise ValidationError("field_a must be greater than field_b")
Custom Accessors and Error Handlers¶
Custom accessors and error handlers are now defined as methods. Schema.accessor
and Schema.error_handler
are deprecated.
from marshmallow import Schema, fields
# 1.0 Deprecated API
class ExampleSchema(Schema):
field_a = fields.Int()
@ExampleSchema.accessor
def get_from_dict(schema, attr, obj, default=None):
return obj.get(attr, default)
@ExampleSchema.error_handler
def handle_errors(schema, errors, obj):
raise CustomError("Something bad happened", messages=errors)
# 2.0 API
class ExampleSchema(Schema):
field_a = fields.Int()
def get_attribute(self, attr, obj, default):
return obj.get(attr, default)
# handle_error gets passed a ValidationError
def handle_error(self, exc, data):
raise CustomError("Something bad happened", messages=exc.messages)
Use post_load
instead of make_object
¶
The make_object
method was deprecated from the Schema
API (see #277 for the rationale). In order to deserialize to an object, use a post_load
method.
# 1.0
from marshmallow import Schema, fields, post_load
class UserSchema(Schema):
name = fields.Str()
created_at = fields.DateTime()
def make_object(self, data):
return User(**data)
# 2.0
from marshmallow import Schema, fields, post_load
class UserSchema(Schema):
name = fields.Str()
created_at = fields.DateTime()
@post_load
def make_user(self, data):
return User(**data)
Error Format when many=True
¶
When validating a collection (i.e. when calling load
or dump
with many=True
), the errors dictionary will be keyed on the indices of invalid items.
from marshmallow import Schema, fields
class BandMemberSchema(Schema):
name = fields.String(required=True)
email = fields.Email()
user_data = [
{"email": "mick@stones.com", "name": "Mick"},
{"email": "invalid", "name": "Invalid"}, # invalid email
{"email": "keith@stones.com", "name": "Keith"},
{"email": "charlie@stones.com"}, # missing "name"
]
result = BandMemberSchema(many=True).load(user_data)
# 1.0
result.errors
# {'email': ['"invalid" is not a valid email address.'],
# 'name': ['Missing data for required field.']}
# 2.0
result.errors
# {1: {'email': ['"invalid" is not a valid email address.']},
# 3: {'name': ['Missing data for required field.']}}
You can still get the pre-2.0 behavior by setting index_errors = False
in a Schema's
class Meta options.
Use ValidationError
instead of MarshallingError
and UnmarshallingError
¶
The MarshallingError
and UnmarshallingError
exceptions are deprecated in favor of a single ValidationError
. Users who have written custom fields or are using strict
mode will need to change their code accordingly.
Handle ValidationError
in strict mode¶
When using strict
mode, you should handle ValidationErrors
when calling Schema.dump
and Schema.load
.
from marshmallow import exceptions as exc
schema = BandMemberSchema(strict=True)
# 1.0
try:
schema.load({"email": "invalid-email"})
except exc.UnmarshallingError as err:
handle_error(err)
# 2.0
try:
schema.load({"email": "invalid-email"})
except exc.ValidationError as err:
handle_error(err)
Accessing error messages in strict mode¶
In 2.0, strict
mode was improved so that you can access all error messages for a schema (rather than failing early) by accessing a ValidationError's
messages
attribute.
schema = BandMemberSchema(strict=True)
try:
result = schema.load({"email": "invalid"})
except ValidationMessage as err:
print(err.messages)
# {
# 'email': ['"invalid" is not a valid email address.'],
# 'name': ['Missing data for required field.']
# }
Custom Fields¶
Two changes must be made to make your custom fields compatible with version 2.0.
The
_deserialize
method of custom fields now receivesattr
(the key corresponding to the value to be deserialized) and the raw inputdata
as arguments.Custom fields should raise
ValidationError
in their_deserialize
and_serialize
methods when a validation error occurs.
from marshmallow import fields, ValidationError
from marshmallow.exceptions import UnmarshallingError
# In 1.0, an UnmarshallingError was raised
class PasswordField(fields.Field):
def _deserialize(self, val):
if not len(val) >= 6:
raise UnmarshallingError("Password too short.")
return val
# In 2.0, _deserialize receives attr and data,
# and a ValidationError is raised
class PasswordField(fields.Field):
def _deserialize(self, val, attr, data):
if not len(val) >= 6:
raise ValidationError("Password too short.")
return val
To make a field compatible with both marshmallow 1.x and 2.x, you can pass *args
and **kwargs
to the signature.
class PasswordField(fields.Field):
def _deserialize(self, val, *args, **kwargs):
if not len(val) >= 6:
raise ValidationError("Password too short.")
return val
Custom Error Messages¶
Error messages can be customized at the Field
class or instance level.
# 1.0
field = fields.Number(error="You passed a bad number")
# 2.0
# Instance-level
field = fields.Number(error_messages={"invalid": "You passed a bad number."})
# Class-level
class MyNumberField(fields.Number):
default_error_messages = {"invalid": "You passed a bad number."}
Passing a string to required
is deprecated.
# 1.0
field = fields.Str(required="Missing required argument.")
# 2.0
field = fields.Str(error_messages={"required": "Missing required argument."})
Use OneOf
instead of fields.Select
¶
The fields.Select
field is deprecated in favor of the newly-added OneOf
validator.
from marshmallow import fields
from marshmallow.validate import OneOf
# 1.0
fields.Select(["red", "blue"])
# 2.0
fields.Str(validate=OneOf(["red", "blue"]))
Accessing Context from Method fields¶
Use self.context
to access a schema’s context within a Method
field.
class UserSchema(Schema):
name = fields.String()
likes_bikes = fields.Method("writes_about_bikes")
def writes_about_bikes(self, user):
return "bicycle" in self.context["blog"].title.lower()
Validation Error Messages¶
The default error messages for many fields and validators have been changed for better consistency.
from marshmallow import Schema, fields, validate
class ValidatingSchema(Schema):
foo = fields.Str()
bar = fields.Bool()
baz = fields.Int()
qux = fields.Float()
spam = fields.Decimal(2, 2)
eggs = fields.DateTime()
email = fields.Str(validate=validate.Email())
homepage = fields.Str(validate=validate.URL())
nums = fields.List(fields.Int())
schema = ValidatingSchema()
invalid_data = {
"foo": 42,
"bar": 24,
"baz": "invalid-integer",
"qux": "invalid-float",
"spam": "invalid-decimal",
"eggs": "invalid-datetime",
"email": "invalid-email",
"homepage": "invalid-url",
"nums": "invalid-list",
}
errors = schema.validate(invalid_data)
# {
# 'foo': ['Not a valid string.'],
# 'bar': ['Not a valid boolean.'],
# 'baz': ['Not a valid integer.'],
# 'qux': ['Not a valid number.'],
# 'spam': ['Not a valid number.']
# 'eggs': ['Not a valid datetime.'],
# 'email': ['Not a valid email address.'],
# 'homepage': ['Not a valid URL.'],
# 'nums': ['Not a valid list.'],
# }
More¶
For a full list of changes in 2.0, see the Changelog.
Upgrading to 1.2¶
Validators¶
Validators were rewritten as class-based callables, making them easier to use when declaring fields.
from marshmallow import fields
# 1.2
from marshmallow.validate import Range
age = fields.Int(validate=[Range(min=0, max=999)])
# Pre-1.2
from marshmallow.validate import ranging
age = fields.Int(validate=[lambda val: ranging(val, min=0, max=999)])
The validator functions from 1.1 are deprecated and will be removed in 2.0.
Deserializing the Empty String¶
In version 1.2, deserialization of the empty string (''
) with DateTime
, Date
, Time
, or TimeDelta
fields results in consistent error messages, regardless of whether or not python-dateutil
is installed.
from marshmallow import fields
fields.Date().deserialize("")
# UnmarshallingError: Could not deserialize '' to a date object.
Decimal¶
The Decimal
field was added to support serialization/deserialization of decimal.Decimal
numbers. You should use this field when dealing with numbers where precision is critical. The Fixed
, Price
, and Arbitrary
fields are deprecated in favor the Decimal
field.
Upgrading to 1.0¶
Version 1.0 marks the first major release of marshmallow. Many big changes were made from the pre-1.0 releases in order to provide a cleaner API, support object deserialization, and improve field validation.
Perhaps the largest change is in how objects get serialized. Serialization occurs by invoking the Schema.dump()
method rather than passing the object to the constructor. Because only configuration options (e.g. the many
, strict
, and only
parameters) are passed to the constructor, you can more easily reuse serializer instances. The dump
method also forms a nice symmetry with the Schema.load()
method, which is used for deserialization.
from marshmallow import Schema, fields
class UserSchema(Schema):
email = fields.Email()
name = fields.String()
user = User(email="monty@python.org", name="Monty Python")
# 1.0
serializer = UserSchema()
data, errors = serializer.dump(user)
# OR
result = serializer.dump(user)
result.data # => serialized result
result.errors # => errors
# Pre-1.0
serialized = UserSchema(user)
data = serialized.data
errors = serialized.errors
Note
Some crucial parts of the pre-1.0 API have been retained to ease the transition. You can still pass an object to a Schema
constructor and access the Schema.data
and Schema.errors
properties. The is_valid
method, however, has been completely removed. It is recommended that you migrate to the new API to prevent future releases from breaking your code.
The Fields interface was also reworked in 1.0 to make it easier to define custom fields with their own serialization and deserialization behavior. Custom fields now implement Field._serialize()
and Field._deserialize()
.
from marshmallow import fields, MarshallingError
class PasswordField(fields.Field):
def _serialize(self, value, attr, obj):
if not value or len(value) < 6:
raise MarshallingError("Password must be greater than 6 characters.")
return str(value).strip()
# Similarly, you can override the _deserialize method
Another major change in 1.0 is that multiple validation errors can be stored for a single field. The errors
dictionary returned by Schema.dump()
and Schema.load()
is a list of error messages keyed by field name.
from marshmallow import Schema, fields, ValidationError
def must_have_number(val):
if not any(ch.isdigit() for ch in val):
raise ValidationError("Value must have an number.")
def validate_length(val):
if len(val) < 8:
raise ValidationError("Value must have 8 or more characters.")
class ValidatingSchema(Schema):
password = fields.String(validate=[must_have_number, validate_length])
result, errors = ValidatingSchema().load({"password": "secure"})
print(errors)
# {'password': ['Value must have an number.',
# 'Value must have 8 or more characters.']}
Other notable changes:
Serialized output is no longer an
OrderedDict
by default. You must explicitly set theordered
class Meta option toTrue
.Serializer
has been renamed toSchema
, but you can still importmarshmallow.Serializer
(which is aliased toSchema
).datetime
objects serialize to ISO8601-formatted strings by default (instead of RFC821 format).The
fields.validated
decorator was removed, as it is no longer necessary given the new Fields interface.Schema.factory
class method was removed.
See also
See the Changelog for a more complete listing of added features, bugfixes and breaking changes.