Nesting Schemas¶
Schemas can be nested to represent relationships between objects (e.g. foreign key relationships). For example, a Blog
may have an author represented by a User object.
import datetime as dt
class User:
def __init__(self, name, email):
self.name = name
self.email = email
self.created_at = dt.datetime.now()
self.friends = []
self.employer = None
class Blog:
def __init__(self, title, author):
self.title = title
self.author = author # A User object
Use a Nested
field to represent the relationship, passing in a nested schema.
from marshmallow import Schema, fields
class UserSchema(Schema):
name = fields.String()
email = fields.Email()
created_at = fields.DateTime()
class BlogSchema(Schema):
title = fields.String()
author = fields.Nested(UserSchema)
The serialized blog will have the nested user representation.
from pprint import pprint
user = User(name="Monty", email="monty@python.org")
blog = Blog(title="Something Completely Different", author=user)
result = BlogSchema().dump(blog)
pprint(result)
# {'title': u'Something Completely Different',
# 'author': {'name': u'Monty',
# 'email': u'monty@python.org',
# 'created_at': '2014-08-17T14:58:57.600623+00:00'}}
Note
If the field is a collection of nested objects, pass the Nested
field to List
.
collaborators = fields.List(fields.Nested(UserSchema))
Specifying Which Fields to Nest¶
You can explicitly specify which attributes of the nested objects you want to (de)serialize with the only
argument to the schema.
class BlogSchema2(Schema):
title = fields.String()
author = fields.Nested(UserSchema(only=("email",)))
schema = BlogSchema2()
result = schema.dump(blog)
pprint(result)
# {
# 'title': u'Something Completely Different',
# 'author': {'email': u'monty@python.org'}
# }
Dotted paths may be passed to only
and exclude
to specify nested attributes.
class SiteSchema(Schema):
blog = fields.Nested(BlogSchema2)
schema = SiteSchema(only=("blog.author.email",))
result = schema.dump(site)
pprint(result)
# {
# 'blog': {
# 'author': {'email': u'monty@python.org'}
# }
# }
You can replace nested data with a single value (or flat list of values if many=True
) using the Pluck
field.
class UserSchema(Schema):
name = fields.String()
email = fields.Email()
friends = fields.Pluck("self", "name", many=True)
# ... create ``user`` ...
serialized_data = UserSchema().dump(user)
pprint(serialized_data)
# {
# "name": "Steve",
# "email": "steve@example.com",
# "friends": ["Mike", "Joe"]
# }
deserialized_data = UserSchema().load(result)
pprint(deserialized_data)
# {
# "name": "Steve",
# "email": "steve@example.com",
# "friends": [{"name": "Mike"}, {"name": "Joe"}]
# }
Partial Loading¶
Nested schemas also inherit the partial
parameter of the parent load
call.
class UserSchemaStrict(Schema):
name = fields.String(required=True)
email = fields.Email()
created_at = fields.DateTime(required=True)
class BlogSchemaStrict(Schema):
title = fields.String(required=True)
author = fields.Nested(UserSchemaStrict, required=True)
schema = BlogSchemaStrict()
blog = {"title": "Something Completely Different", "author": {}}
result = schema.load(blog, partial=True)
pprint(result)
# {'author': {}, 'title': 'Something Completely Different'}
You can specify a subset of the fields to allow partial loading using dot delimiters.
author = {"name": "Monty"}
blog = {"title": "Something Completely Different", "author": author}
result = schema.load(blog, partial=("title", "author.created_at"))
pprint(result)
# {'author': {'name': 'Monty'}, 'title': 'Something Completely Different'}
Two-way Nesting¶
If you have two objects that nest each other, you can pass a callable to Nested
.
This allows you to resolve order-of-declaration issues, such as when one schema nests a schema that is declared below it.
For example, a representation of an Author
model might include the books that have a many-to-one relationship to it.
Correspondingly, a representation of a Book
will include its author representation.
class BookSchema(Schema):
id = fields.Int(dump_only=True)
title = fields.Str()
# Make sure to use the 'only' or 'exclude'
# to avoid infinite recursion
author = fields.Nested(lambda: AuthorSchema(only=("id", "title")))
class AuthorSchema(Schema):
id = fields.Int(dump_only=True)
title = fields.Str()
books = fields.List(fields.Nested(BookSchema(exclude=("author",))))
from marshmallow import pprint
from mymodels import Author, Book
author = Author(name="William Faulkner")
book = Book(title="As I Lay Dying", author=author)
book_result = BookSchema().dump(book)
pprint(book_result, indent=2)
# {
# "id": 124,
# "title": "As I Lay Dying",
# "author": {
# "id": 8,
# "name": "William Faulkner"
# }
# }
author_result = AuthorSchema().dump(author)
pprint(author_result, indent=2)
# {
# "id": 8,
# "name": "William Faulkner",
# "books": [
# {
# "id": 124,
# "title": "As I Lay Dying"
# }
# ]
# }
You can also pass a class name as a string to Nested
.
This is useful for avoiding circular imports when your schemas are located in different modules.
# books.py
from marshmallow import Schema, fields
class BookSchema(Schema):
id = fields.Int(dump_only=True)
title = fields.Str()
author = fields.Nested("AuthorSchema", only=("id", "title"))
# authors.py
from marshmallow import Schema, fields
class AuthorSchema(Schema):
id = fields.Int(dump_only=True)
title = fields.Str()
books = fields.List(fields.Nested("BookSchema", exclude=("author",)))
Note
If you have multiple schemas with the same class name, you must pass the full, module-qualified path.
author = fields.Nested("authors.BookSchema", only=("id", "title"))
Nesting A Schema Within Itself¶
If the object to be marshalled has a relationship to an object of the same type, you can nest the Schema
within itself by passing a callable that returns an instance of the same schema.
class UserSchema(Schema):
name = fields.String()
email = fields.Email()
# Use the 'exclude' argument to avoid infinite recursion
employer = fields.Nested(lambda: UserSchema(exclude=("employer",)))
friends = fields.List(fields.Nested(lambda: UserSchema()))
user = User("Steve", "steve@example.com")
user.friends.append(User("Mike", "mike@example.com"))
user.friends.append(User("Joe", "joe@example.com"))
user.employer = User("Dirk", "dirk@example.com")
result = UserSchema().dump(user)
pprint(result, indent=2)
# {
# "name": "Steve",
# "email": "steve@example.com",
# "friends": [
# {
# "name": "Mike",
# "email": "mike@example.com",
# "friends": [],
# "employer": null
# },
# {
# "name": "Joe",
# "email": "joe@example.com",
# "friends": [],
# "employer": null
# }
# ],
# "employer": {
# "name": "Dirk",
# "email": "dirk@example.com",
# "friends": []
# }
# }
Next Steps¶
Want to create your own field type? See the Custom Fields page.
Need to add schema-level validation, post-processing, or error handling behavior? See the Extending Schemas page.
For example applications using marshmallow, check out the Examples page.